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Abstract. Total binding energies and yrast energy spectra of three selected 1p0f–nuclei have been calculated
using an unrestricted Hartree–Fock–Bogoliubov approach with symmetry–projection before the variation.
The full 1p0f–shell has been used as single–particle basis and the semi–empirical FPD6 interaction as
effective Hamiltonian. The results are compared to those of truncated shell–model calculations performed
with the OXBASH code. In the middle of the 1p0f–shell the variational method yields energy gains up to
4.5 MeV and thus proves to be far superior than the conventional truncation methods at least if in the
latter only up to about 13000 configurations for each spin–isospin combination are admitted.

1 Introduction

With the two assumptions that
(1) a finite number of single particle orbits around the

Fermi–level is a sufficiently large model space to com-
pute the properties of the ground and low excited
states of a considered nucleus and

(2) for this model space an appropriate effective Hamil-
tonian is known

the nuclear many–body problem can be solved exactly,
at least in principle. Because of the finite number of sin-
gle particle orbits the number of possible A–nucleon con-
figurations is finite, too, and thus, if the Hamiltonian is
known, it can be diagonalized in the resulting complete
space. This is done in conventional nuclear shell–model
configuration–mixing (SCM) calculations. Unfortunately,
the number of A–nucleon configurations to be treated in-
creases dramatically with the number of single particle
orbits included in the model space as well as with the
number of valence nucleons. Thus complete SCM calcu-
lations up to now have been restricted to rather small
model spaces. For a long time these were of the size of the
1s0d–shell. Recently, however, with the tremendous im-
provement in computer facilities, also conventional SCM
calculations within a full 1p0f–basis have become possi-
ble at least up to A ∼ 56 [1]. To tackle the problem of
even larger dimensions stochastic quantum Monte Carlo
approaches, like the shell–model Monte Carlo (SMMC) [2]
or the quantum Monte Carlo diagonalisation (QMCD) [3],
as well as conventional approximative truncation methods
[4,5] have been used.

An alternative to these methods is the use of varia-
tional techniques on the basis of much fewer but more
complicated configurations like, e.g., symmetry–projected
generalized Slater–determinants of the Hartree–Fock–
Bogoliubov (HFB)–type. These techniques avoid a trun-
cation of the shell–model configuration space “by hand”
as in the conventional or by “throwing dice” as in the
Monte–Carlo methods but leave the selection of the rele-
vant degrees of freedom entirely to the chosen Hamiltonian
itself. Furthermore, they have the advantage that they can
be used also in rather large model spaces including two
or even three major shells which are out of reach of the
SCM approach even on modern computers. Several meth-
ods along these lines have been developed within the last
decade [6-8]. The simplest of them is the so–called VAM-
PIR (Variation After Mean–field Projection In Realistic
model spaces)[6-11] approach which approximates each
of the yrast–states of a considered nucleus by a single
symmetry–projected HFB vacuum with the underlying
mean–fields being determined by independent variational
calculations. Additional correlations within some yrast–
state can then be accounted for by adding successively in
a chain of variational calculations additional symmetry–
projected HFB configurations. This is done in the FED
(i.e., FEw Determinants) VAMPIR approach [12]. The
first excited state with the same symmetry as a certain
yrast state can be described by eliminating the VAMPIR
(or FED VAMPIR) solutions from the variational space
by Gram–Schmidt–orthogonalisation and then determin-
ing the optimal one– (or few–) determinant solutions for
this first excited state. Afterwards, this solution can be
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eliminated from the variational space, too, and the sec-
ond excited state can be calculated and so on, up to the
desired number of excited states with the same symme-
try has been reached. Finally, the residual interaction be-
tween all these solutions is diagonalized. This procedure
is used in the EXCITED VAMPIR, which allows for only
one symmetry–projected determinant per state, and its
extension the EXCITED FED VAMPIR approach, which
admits several of them per considered state [11-13].

Obviously, these chains of rather sophisticated vari-
ational calculations cannot be performed ad infinitum.
They will definitely be limited to the lowest few states
with particular quantum numbers. If one is interested in
the whole excitation spectrum of the nucleus with re-
spect to a particular (e.g., electromagnetic) operator, one
is therefore forced to simplify the procedure. One way to
do this is to expand the wave functions for a given sym-
metry around the corresponding VAMPIR solution as it is
done in the MONSTER (MOdel handling many Number
and Spin projected Two quasi–particle Excitations in
Realistic model spaces) approach [6,14], which (for a given
symmetry) diagonalizes the chosen Hamiltonian in the
space of the VAMPIR solution and all the symmetry–
projected two–quasi–particle excitations with respect to
it.

Within the last fifteen years all these methods have
been applied rather successfully to many nuclear structure
problems (see, e.g., the reviews [6,11,15]). For example,
they have been used rather extensively for the theoret-
ical investigation of shape coexistence, shape transitions
[16,17] and proton–neutron pairing correlations [18] in the
A ∼ (70− 80) mass–region nuclei.

However, out of numerical reasons, all these appli-
cations have still been restricted by assuming at least
time–reversal and axial symmetry for the underlying HFB
vacua. Only recently these approximations could be re-
moved and completely unrestricted “General Complex
VAMPIR” (GCV) calculations have been reported for se-
lected nuclei within an 1s0d–shell basis [19]. It turned out
that the energies of the “exact” SCM yrast spectra of these
nuclei could be extremely well reproduced using only one
symmetry–projected HFB configuration per state.

In the present paper we shall report the results of
such unrestricted calculations for 46Ti, 50Cr and 62Zn.
Again we shall use only the one–determinant VAMPIR
approach, which is the simplest of the variational methods
mentioned above. We did not, however, impose any sym-
metry restrictions on the underlying HFB vacua. Yrast
spectra and total binding energies will be compared to
exact shell–model results, where those are available, oth-
erwise to those of conventionally truncated shell–model
calculations. In addition comparison will be made with
the experimental data and with the results of the older,
more restricted versions of the VAMPIR and MONSTER
approaches. Furthermore, the possibilities of using GCV
method in even larger model spaces than the 1p0f–shell
will be discussed.

We shall start by summarizing the essential features of
the GCV model in the next section. A detailed formulation

can be found in several publications [8,10,11,12,13,19]. In
Sect. 3 we then present and discuss the results. Finally
conclusions and an outlook will be given in Sect. 4.

2 The general complex vampir approach

Be {|i >, |k >, ...}Mb
a finite Mb –dimensional set of

orthonormal spherical single nucleon states. The corre-
sponding creation and annihilation operators will be de-
noted by {c†i , c

†
k, ...}Mb

and {ci, ck, ...}Mb
, respectively.

They fulfill the usual anticommutation–relations for
Fermion field operators. The particle vacuum |0 > is de-
fined by ci|0 >≡ 0 for all i = 1, ...,Mb.

We now introduce quasi–particle creators and annihi-
lators via

a†α ≡
Mb∑
i=1

(Aiαc
†
i +Biαci) (1)

and hence

aα =
Mb∑
i=1

(B∗iαc
†
i +A∗iαci) (2)

respectively. (1) and (2) can be combined to a single
matrix–equation(

a†

a

)
=
(
AT BT

B† A†

)(
c†

c

)
≡ F

(
c†

c

)
(3)

with F being a (2Mb × 2Mb)–dimensional matrix. In or-
der to ensure anti–commutation relations for the quasi–
particle operators (1) and (2) this matrix has to be uni-
tary

FF † = F †F = 12Mb
(4)

Equations (3) and (4) define the famous HFB transfor-
mation [20]. It is the most general linear transformation
conserving the anti–commutation relations, which can be
constructed within the chosen finite single particle basis.

The vacuum |F > for the quasi–particle annihilators
(2) is defined by

aα|F > ≡ 0 for all α = 1, ...,Mb (5)

and may be represented as

|F > =
(M ′b∏
α=1

aα

)
|0 > with M ′b≤Mb (6)

where the product runs over all α with aα|0 > being dif-
ferent from zero.

Since the transformation (3) sums over all the quan-
tum numbers characterizing the single particle basis states
(isospin–projection, orbital angular momentum, total an-
gular momentum, the 3–projection of the latter, and the
radial excitation), |F > is neither an eigenstate of the
square of the total angular momentum operator Î2 nor
of its 3–component Îz. Furthermore particle number and
charge conservation are violated and, in general, the vac-
uum (6) has no definite parity either. The only symmetry
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still conserved is the so–called “number–parity” [21], i.e.
|F > contains either only components with even or with
odd total nucleon numbers A.

From the vacuum (6) one can construct configurations
with the desired symmetry quantum numbers s ≡ ATzIπ
using the operator [7]

Θ̂sMK ≡ P̂ (IM ;K)Q̂(2Tz)Q̂(A)p̂(π) (7)

Here
p̂(π) ≡ 1

2
(1 + πΠ̂) (8)

with Π̂ being the parity operator, projects onto definite
parity π.

Q̂(A) ≡ 1
2π

∫ 2π

0

dϕexp{iϕ(A− Â)} (9)

with Â being the nucleon number operator, restores the
desired total nucleon number A [22], and

Q̂(2Tz) ≡
1

2π

∫ 2π

0

dχexp{iχ(N − Z − N̂ + Ẑ)} (10)

with N̂ and Ẑ being the neutron and proton number oper-
ators, respectively, selects the components with a definite
total isospin-projection 2Tz = N − Z.

Finally

P̂ (IM ;K) ≡ 2I + 1
8π2

∫ (4π)

dΩDI∗

MK(Ω)R̂(Ω) (11)

with R̂(Ω) being the usual rotation operator [23] and
DI
MK(Ω) denoting its representation in angular momen-

tum eigenstates constructs from the I3 = K component
in the symmetry–breaking “intrinsic” frame of reference a
configuration in the laboratory frame with total angular
momentum I and 3–component Iz = M [24].

Via the K–quantum number the configuration ob-
tained by acting with the operator (7) on the HFB vac-
uum (6) does still depend on the orientation of the in-
trinsic quantisation axis. This unphysical dependence is
eliminated by taking the linear combinations

|φρ; sM > ≡
+I∑

K=−I
Θ̂sMK |F > fK;ρ (12)

as physical configurations. Even if only a single determi-
nant is considered, the restoration of the rotational sym-
metry thus introduces additional configuration–mixing co-
efficients f , which together with the intrinsic degrees of
freedom of the underlying HFB transformation will have
to be determined by variation.

In the following we shall restrict ourselves to test wave
functions of the form (12). However, the extension to lin-
ear combinations of several configurations of this type is
straightforward [12] and the code we have constructed can
handle also this general option. Details of the procedure

to determine the underlying mean fields and the config-
uration mixing by chains of variational calculations are
discussed in the [7,12].

In a given basis the unrestricted, complex transforma-
tion F mixes all m–states with m = −jmax to +jmax
regardless of parity and proton or neutron origin. Thus
after projection of parity, nucleon numbers, and finally
the 3–dimensional projection of the total spin any type
of state can be described in doubly–even, doubly–odd and
odd nuclei already via a single determinant. This is not the
case in the older versions of the approach where certain
symmetries were imposed on the underlying HFB trans-
formations.

The requirement of axially symmetric HFB transfor-
mations induces that the vacua are eigenstates to the 3–
component of the total angular momentum operator Î3
with eigenvalues K = 0. The assumption of time–reversal
invariance introduces in addition a two–fold degeneracy
into the system. Consequently, the resulting test wave
functions are restricted to even nucleon number and can
only describe states of doubly–even or doubly–odd nuclei.
Furthermore, not even all states in these nuclei are acces-
sible. Though by the use of essentially complex transfor-
mations all possible two–nucleon couplings are included,
particular four– and more–nucleon couplings are missing
[7,10,13] : two natural (or unnatural) parity pairs can-
not be coupled to an unnatural parity four nucleon wave
function and one natural and one unnatural parity pair
not to a natural parity four nucleon state. Hence, e.g.,
out of all the (0d5/2)4 shell–model configurations just one
Iπ = 3+ and one Iπ = 5+ state (both with total isospin
T=0) are missing. Similarly, from all the (0d5/2)6 configu-
rations one 4+ and one 6+ state cannot be accounted for.
Consequently, excitations which are dominated by con-
figurations containing such “missing couplings” as irre-
ducible substructures cannot be described even within the
COMPLEX VAMPIR approach.

In earlier calculations we had imposed even more se-
vere symmetry restrictions on the HFB transformations :
proton–neutron– and parity–mixing were forbidden and
only real mean fields were admitted. Consequently, only
natural parity states in doubly–even nuclei were accessible
by the various so called REAL VAMPIR approaches.

It should be stressed, however, that at least some
of these deficiencies can be overcome even on the basis
of symmetry–restricted transformations. This is done in
the MONSTER approach, a multi–configuration method,
which diagonalizes the Hamiltonian in the space of the
VAMPIR solution and all the corresponding symmetry–
projected two–quasi–particle excitations. In this way, K–
mixing is included right from the beginning and missing
couplings are avoided. Similar calculations, though on the
basis of fixed intrinsic mean fields and restricted to sepa-
rable forces, have been performed by Hara and Sun [25].
The MONSTER approach, however, is only suited for ex-
ited states whose structure is not too different from that
of the underlying HFB vacuum.
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Table 1. The dimensions of various Jπ states for complete and truncated 1p0f–shell SCM calculations are presented. The first
column from the left gives the complete shell model configuration spaces for the T = 1 states in 46Ti, the next two columns
the complete and truncated configuration spaces for the T = 1 states in 50Cr. The next two columns present the corresponding
numbers for the nucleus 62Zn. The truncation schemes are discussed in the text. Furthermore the table gives the number of
variational degrees of freedom included in the GENERAL COMPLEX VAMPIR (GCV), COMPLEX VAMPIR (CV) and REAL
VAMPIR (RM) approaches and, for the last two cases, the numbers of configurations included in the COMPLEX MONSTER
(CM) and REAL MONSTER (RM) calculations

Jπ 46Ti 50Cr 50Cr(T) 62Zn 62Zn(T2) GCV CM CV RM RV

0+ 1 514 134 361 800 9 115 163 2 359 1 560 121 120 41 40
1+ 4 105 387 477 2 196 26 632 734 6 626 1 562 337 120 72 40
2+ 6 338 604 907 3 530 42 172 869 10 057 1 564 521 120 139 40
3+ 7 533 763 543 4 436 54 631 847 12 035 1 566 647 120 148 40
4+ 8 026 857 287 5 107 63 333 830 12 637 1 568 727 120 189 40
5+ 7 532 881 146 5 281 67 946 333 11 833 1 570 763 120 176 40
6+ 6 606 846 273 5 216 68 620 892 10 149 1 572 779 120 201 40
7+ 5 223 762 983 4 762 65 804 605 7 908 1 574 781 120 180 40
8+ 3 896 651 241 4 197 60 265 145 5 673 1 576 781 120 201 40

3 Results and discussions

Unlike the 1s0d–space, where complete SCM diagonalisa-
tions could be performed already more than 20 years ago,
such calculations in a full 1p0f–basis are still a big chal-
lenge, though in the meantime dimensions up to about
10 to 20 million configurations can and have been treated
within the conventional shell–model [1,26]. So, e.g., Cau-
rier et al. [27] reported recently on SCM calculations
within a 1p0f–basis with typically as many as 10 mil-
lion configurations. However, for nuclei in the middle of
the shell like e.g. 62Zn, even these large dimensions do
not span the complete space. It is therefore an interest-
ing question, how the above mentioned variational meth-
ods perform with respect to the truncated SCM. For this
purpose we decided to perform GCV calculations for the
yrast spectra of the three nuclei 46Ti, 50Cr and 62Zn in the
full 1p0f–basis and to compare the results for the energies
with those of complete and truncated SCM calculations
as well as to those of the older, symmetry–restricted ver-
sions of the VAMPIR and MONSTER approaches. Note,
that the VAMPIR approach describes each yrast state by
a single symmetry–projected HFB determinant instead of
using thousands or even millions of configurations.

Unfortunately, the modern SCM codes were not avail-
able to us. Instead we used the OXBASH code [28] which
was not designed to treat particularly large dimensions
so that here much more severe truncations than men-
tioned above were necessary. In fact because of the lim-
ited computer facilities we used we had to keep the SCM
dimensions for each angular momentum and isospin JT
below ∼ 13000. As can be seen from Table 1, which dis-
plays the complete SCM dimensions for the three consid-
ered nuclei, this is more than sufficient for 46Ti so that
there the SCM results are “exact”. For 50Cr we truncated
the number of configurations by limiting the number of
0f7/2–nucleons to a minimum of 7 and a maximum of 10
and allowing maximally only 3 nucleons in the 1p3/2–
and only 2 nucleons in the 0f5/2– and 1p1/2–levels, re-
spectively. Finally, for 62Zn two different truncations were

used. In the less severe of them (T2) maximally 2 holes in
the 0f7/2–orbit were admitted and only 0 to 8 nucleons
were allowed in its spin–orbit partner, while the 1p3/2–
and 1p1/2–occupations were not restricted. This yields
the dimensions listed in the 6-th column of Table 1. The
stronger trucation (T1) (not displayed in the table) al-
lowed for maximally 1 hole in the 0f7/2–level, and limited
the 0f5/2– and 1p3/2–occupations to 0 to 5 and 2 to 7,
respectively, while again no restriction was made for the
number of nucleons in the 1p1/2–orbit.

Furthermore Table 1 displays the number of varia-
tional parameters obtained for the “real” (RV), “complex”
(CV) and “general complex” (GCV) VAMPIR approxi-
mations and, for the first two of those, the number of
configurations used in the corresponding MONSTER cal-
culations. Note, that in the GCV case the number of vari-
ational variables increases with the total angular momen-
tum. This is due to the additional variational degrees of
freedom f introduced in (12). The increase of the MON-
STER dimensions with increasing angular momentum is
due to the inclusion of the two–quasi–particle configura-
tions with K 6= 0. It is clearly seen, that (except for the 0+

in 46Ti) even in the GCV approach the number of vari-
ational degrees of freedom is considerably smaller than
the dimensions of the SCM configuration spaces though
the latter had been severly truncated in the two heavier
nuclei.

As effective interaction we used for all calculations
the Hamiltonian FPD6 described in detail in [29]. This
semi–empirical interaction is based on a parametrization
in terms of density–dependent one–boson exchange poten-
tials with 18 parameters which were fitted in the above
mentioned reference together with the single particle en-
ergies using the OXBASH code to a selected set of 61
energy levels in nuclei in between 41Ca and 49Ca.

Figure 1 displays the binding energies relative to the
40Ca core for the yrast spectrum of 46Ti up to spin 8+ as
obtained by various versions of the VAMPIR and MON-
STER approaches. The results are compared to those of
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Fig. 1. The yrast spectrum of the nucleus 46Ti as obtained
with different variational methods discussed in the text are
compared to that resulting from a complete shell–model diag-
onalisation

a complete shell–model diagonalisation (SCM) which are
presented in the rightmost column of the figure. Start-
ing from the left we first give the results of REAL VAM-
PIR (RV) calculations. In this approach axial and time–
reversal symmetry are imposed on the underlying HFB
transformations, proton–neutron mixing is neglected and
only real HFB transformations are admitted. As a con-
sequence of these symmetry–restrictions, only states with
even spin and positive parity in doubly even nuclei can
be described. As can be seen, already in this simple ap-
proach, the relative excitation energies are not far from
those of the SCM spectrum, the differences in absolute
energy, however, are larger than 300 keV for all states.
Performing a REAL MONSTER (RM) calculation on top
of the REAL VAMPIR vacuum for the ground state gives
slightly more binding, except for the ground state which,
as a variational solution, is energetically stable against
the symmetry–projected two–quasipartile admixtures and
thus remains unchanged. Note, that because of the inclu-
sion of time–reversal non–invariant configurations the odd
spin states can be described in the RM approach, too. The
quality of their description is about equally good as for
the even spins, though the order of the nearby 3+ and 5+

states is inversed with respect to the SCM spectrum.
The third column presents the result of the COM-

PLEX VAMPIR (CV) approach. Here proton–neutron
mixing is allowed and essentially complex HFB transfor-
mations are admitted. Thus, even assuming still time–
reversal and axial symmetry, now all possible time–even
as well as time–odd two–nucleon couplings are accounted
for. However, as already mentioned above, some 4– and
more nucleon–couplings are missing in this approach.
Thats why the inclusion of the additional correlations does

improve the even spin states obtained in the RV (and
RM) approaches, the odd spin states, however, calculated
within the CV approximation suffer from these missing
couplings and are more than 2 MeV off from the exact
results. The COMPLEX MONSTER (CM) (based on top
of the CV ground state solution) leaves again the ground
state unchanged, improves, however, on the excited states.
The odd spin states are now desribed equally well so that
all the states displayed here are only about 200 KeV less
bound than the SCM results.

Finally, the results of the unrestricted GENERAL
COMPLEX VAMPIR (GCV) approach is presented in the
fifth column. Though here each state is approximated by
only one symmetry–projected determinant, the agreement
with the exact SCM results is here even better than in
the CM calculation. All the considered states are now less
than 100 KeV above the exact results and the ground
state is even exact. This can be understood from the fact
that for spin–parity 0+ the number of variational degrees
of freedom is slightly larger than the corresponding SCM
dimension as can be seen from Table 1. The remaining
differences for the higher spin states could be easily re-
moved by correlating the GCV solutions with one or two
additional symmetry–projected determinants as indicated
in the last chapter. We can conclude that inspite of the
much larger model space at least at the beginning of the
1p0f–shell the agreement of the one–determinant GCV ap-
proach with the exact SCM results for the yrast states
is equally good as throughout the 1s0d–shell which had
been considered in an earlier paper [19]. Finally, we would
like to stress that a GENERAL COMPLEX MONSTER
(GCM) [30] calculation would not change the GCV yrast
spectrum at all. Because of the absence of any symmetry–
restrictions the GCV solutions are now energetically sta-
ble against admixtures of arbitrary symmetry–projected
two–quasi–particle excitations and not only of those with
K = 0 as it was the case in the RM and CM approaches.
Thus (if based for each spin on the corresponding GCV
solution) the GCM approach can only reproduce the GCV
yrast states.

As next example we considered the yrast states of the
nucleus 50Cr. The results are displayed in Fig. 2. Rather
similar features as in case of 46Ti are observed as, e.g., the
bad description of the odd spin states by the CV approach
due to the missing couplings and its improvement in the
CM approximation. The latter was here obtained by using
for each angular momentum that particular CV solution
for the even spin states states which yielded after diagonal-
isation the lowest energy for the corresponding yrast state.
As expected because of the larger configuration space the
energy gains of the unrestricted GCV approach with re-
spect to the CM spectrum are here considerably larger
than for the Titanium nucleus. The various VAMPIR and
MONSTER results are compared here to a severly trun-
cated SCM calculation (see Table 1). The severe trunca-
tion has the consequence that the resulting yrast states
are even less bound than in the simple RV approxima-
tion (at least up to angular momentum 4+) and consid-
erably less bound (up to about 2.5 MeV) with respect
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Fig. 2. Same as in Fig.1, but for the nucleus 50Cr. Here the
shell–model configuration space has been severly truncated as
explained in the text

Fig. 3. Same as in Fig.1, but for the nucleus 62Zn. The details
of the two conventional shell–model truncation schemes are
given in the text

to the GCV spectrum. Obviously, this comparison is not
quite fair, since 50Cr can be done exactly by more modern
shell–model codes [1]. Using the same force such calcula-
tions would obviously obtain more binding then the one
determinant GCV approach. However, the example shows
clearly, that with respect to severe conventional trunca-
tions, the variational method is clearly preferable.

Finally, we consider the nucleus 62Zn. Table 1 shows
that here even modern shell–model calculations have to be
truncated. Because of the use of the OXBASH code and of
the limited computer power available to us we used again
rather severe truncations. Only up to about 13000 config-

Fig. 4. The one–determinantal GCV yrast spectra of the nuclei
46Ti, 50Cr and 62Zn compared to the experimental energy levels
[23]. For the latter two nuclei the results of the truncated shell–
model calculations are presented, too

urations for each spin–isospin combination were admitted
in the truncation nr. 2 (T2) and for comparison in addition
even a more severe truncation (T1) was used. The results
of these calculations are displayed in Fig. 3. In the vari-
ous versions of the VAMPIR and MONSTER approaches
again rather similar features as in case of 46Ti and 50Cr are
observed, however, here the energy gains of, e.g., the CV
spectrum with respect to the RV results are much larger.
This indicates the presence of more time–odd correlations
in this nucleus than in the other two. Even larger are the
energy gains of the unrestricted GCV approach with re-
spect to the CV and also CM results which again for each
angular momentum were based on that even spin CV so-
lution which yielded the minimal CM yrast energy. As
compared to the truncated SCM spectra, the GCV ap-
proach yields energy gains of about 4 MeV with respect
to the truncation T2 and even about 5.5 MeV with re-
spect to the more severe truncation T1. Thus, even more
than in the nucleus 50Cr the unrestricted one–determinant
GCV approach seems to provide a much better truncation
scheme than the conventional SCM truncations at least if
the latter are rather severe.

Figure 4 compares the GCV and the truncated SCM
results to the experimental spectra [31]. Unlike in the pre-
vious figures here only the relative excitation energies are
plotted. In the nucleus 46Ti the complete SCM calcula-
tion and the GCV approach differ in the average by less
than 100 KeV. Thats why here only the GCV spectrum
is shown. The experimental levels are reproduced rather
well in this nucleus. This is somehow to be expected since
the chosen effective Hamiltonian was optimized to energy
levels in this mass region. In 50Cr, the truncated shell–
model spectrum is considerably more compressed than the
GCV one and agrees better with the experimental data.
However, one has to keep in mind, that the GCV levels
are all considerably more bound than the truncated SCM
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Table 2. The total binding energies (in MeV) relative to the
40Ca core, including the Coulomb corrections, are presented.
The results of the GCV approach and of the complete shell–
model calculations in 46Ti and the truncated ones in the two
other nuclei are compared to experimental values

ZA BE(Exp.) BE(SCM) ∆(SCM) BE(GCV) ∆(GCV)

46Ti 56.14 55.90 −0.24 55.90 −0.24
50Cr 92.99 89.88 −3.11 92.30 −0.69
62Zn 196.07 184.75 −11.32 188.63 −7.43

ones. Furthermore, no T=1 states in this mass region have
been used to fix the effective Hamiltonian. Thus this bet-
ter agreement has to be taken with care. It is rather likely
to be accidental. In 62Zn we observe again that the (less se-
vere) truncated SCM spectrum is considerably compressed
with respect to the GCV results. Here, however, the latter
agree better with the experimental findings, especially for
the higher spin states like 4+, 5+, 6+ and 7+. Unfortu-
nately, again the better agreement of one of the methods
with the experimental data should be taken with care. The
Hamiltonian has not been fitted in this mass region.

Obviously, it would be interesting to see how the GCV
approach (and its improvements like the GENERAL EX-
CITED FED VAMPIR approach) would perform with re-
spect to less severly truncated shell–model calculations
like, e.g., those of Caurier et al. [27] who used a differ-
ent interaction. We intend to do such comparisons in a
forthcoming paper.

Finally, we would like to compare the total binding
energies obtained for the ground state of the three con-
sidered nuclei with the experimental data [32]. For this
purpose we have to correct the latter for the Coulomb
interaction which was not included in the calculations.
These Coulomb corrections can be estimated from the dif-
ferences in binding energies between pairs of analog states
(see [29,33]) and are listed in [34]. For 62Zn unfortunately,
there is no entry in [34]. Thus, for this nucleus we used
an approximate formula for the Coulomb correction with
the parametrisation of Caurieret al [1] based on a fit for
nuclei between A = 42− 64 :

EC = 7.44× p+ 0.137× p(p− 1)− 0.049× pn (13)

where p and n denote the numbers of valence protons and
neutrons, respectively. The results for the total binding
energies are displayed in Table 2.

As can be seen, the experimental binding energy for
46Ti is nicely reproduced. For 50Cr the error of the GCV
binding energy is still only 0.7% while in the middle of the
shell, for 62Zn, it deviates by 3.8% from the experimental
value while for the truncated SCM the deviations in these
two nuclei are considerably larger. Again, however, one has
to be a little careful with this comparison, since the chosen
effective Hamiltonian was not optimized for the latter two
nuclei and since for the SCM calculations rather severe
truncations have been used.

4 Conclusions

In the present paper we have reported results of com-
pletely unrestricted symmetry–projected HFB calcula-
tions to three selected nuclei in a full 1p0f–shell basis.
The results of these “GENERAL COMPLEX VAMPIR”
(GCV) calculations have been compared to those of ear-
lier, more restricted versions of the same approach as well
as to those of multi–configuration approaches based on
the corresponding mean fields (MONSTER) and to those
of exact and conventionally truncated shell–model diago-
nalisations (SCM).

It turned out that at the beginning of the shell (as ex-
ample here the nucleus 46Ti was considered) the “exact”
shell–model energies for the yrast states can be reproduced
rather well even using only one symmetry–projected HFB
determinant per state. The deviations are for all consid-
ered states less than about 100 KeV. For heavier systems
(here the examples 50Cr and 62Zn have been considered)
the variational GCV method is far superior than the con-
ventionally truncated SCM approach. Here the GCV yrast
states are more bound than the corresponding truncated
SCM ones by about 2.5 and 4 MeV, respectively. Obvi-
ously, one has to stress that in the SCM diagonalisations
here only about up to 13000 configurations for each spin–
isospin combination have been included. Nowadays the
conventional SCM method can treat up to about 10 to
20 million configurations and thus yields “exact” results
for 1p0f–shell nuclei up to about A ∼ 56. However, one
has to keep in mind, too, that the GCV approach uses
only one symmetry–projected determinant per state and is
hence essentially a “free” theory. It can be easily improved
by adding successively a few correlating configurations in
a chain of variational calculations. Thus the results pre-
sented here clearly prove that the variational method pro-
vides an excellent tool to truncate shell–model spaces in
a very effective way.

Obviously, wherever complete SCM diagonalisations
are possible they are preferable with respect to the varia-
tional approaches discussed here. One cannot be more ex-
act than exact. However, this is not what, e.g., the GCV
approach is designed for. VAMPIR and MONSTER are al-
ternatives for such model spaces where SCM calculations
are only possible in either severely truncated model spaces
or cannot be done at all within an acceptable truncation
scheme. This includes almost all problems where model
spaces including more than one major shell are needed,
e.g., even comparatively simple problems like the desrip-
tion of negative parity states in 1s0d–shell nuclei. These
are the kind of problems the approaches discussed here
are aiming at.

On the other hand, as soon as the basis becomes larger
than a single major shell, we encounter a well known
though rarely discussed problem. Most approaches to the
nuclear many body problem (including the SCM and the
various VAMPIR and MONSTER approaches) expand the
wave functions in terms of Slater or generalized Slater de-
terminants. In this way the Pauli principle is fulfilled by
construction but Galilei–invariance is severely broken. It
is usually argued that this is an 1/A effect and thus of mi-
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nor importance at least for systems heavier than 16O. Re-
cent investigations [35,36] show that this statement is not
true. Spectroscopic factors, form factors, response func-
tions and even energies can be severly affected by an in-
correct treatment of the center of momentum motion even
in nuclei like 40Ca and beyond. We therefore believe that
the restoration of full Galilean invariance, obviously before
the variation, is unavoidable.

This can be achieved again by projection methods
[35,36]. The corresponding integral operator involves an-
other three–fold integration to be performed in addition
to the five–fold integration already present in the GCV
approach. Thus a correct treatment of Galilei–invariance
is hardly possible on present day sequential or vector com-
puters. For parallel processing the situation is quite dif-
ferent. The GCV calculations involving multi–fold inte-
grations are particularly suited for parallel data process-
ing : test calculations in 1s0d–shell [19] showed a linear
increase of the inverse CPU time with the number of pro-
cessors available and thus the optimal performance which
can be reached on parallel computers. Since, furthermore,
we have already succeeded in developing the mathemat-
ical apparatus needed for the projection of general HFB
determinants into the center of momentum rest frame, we
are confident that this procedure will become numerically
feasible in a not very distant future.

The intensive work on the attempt to implement
Galilei–invariance in the GCV approach is also the reason
why, as in [19], also here only energies and not other im-
portant observables like, e.g., electromagnetic transitions
have been calculated. Such observables will be considered
at a later stage.

We thank Mr. Teemu Siiskonen for performing the shell model
calculations and the DAAD for financial support.
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